Skip to contents

Plot a fitted rgcca permutation object. The set of candidate tuning parameters are represented on the y-axis and the RGCCA objective function - obtained from both the original and permuted blocks - on the x-axis. If type = "zstat" the value of the zstat for the various parameter sets are reported on the x-axis.

Usage

# S3 method for permutation
plot(
  x,
  type = "crit",
  cex = 1,
  title = NULL,
  cex_main = 14 * cex,
  cex_sub = 12 * cex,
  cex_point = 3 * cex,
  cex_lab = 12 * cex,
  display_order = TRUE,
  show_legend = FALSE,
  ...
)

Arguments

x

A fitted rgcca_permutation object (see rgcca_permutation).

type

A string indicating which criterion to plot. Default is 'crit' for the RGCCA criterion. Otherwise, the pseudo Z-score is used.

cex

A numeric defining the size of the objects in the plot. Default is one.

title

A string specifying the title of the plot.

cex_main

A numeric defining the font size of the title. Default is 14 * cex.

cex_sub

A numeric defining the font size of the subtitle. Default is 12 * cex.

cex_point

A numeric defining the font size of the points. Default is 3 * cex.

cex_lab

A numeric defining the font size of the labels. Default is 12 * cex.

display_order

A logical value for ordering the variables. If TRUE, variables are ordered from highest to lowest absolute value. If FALSE, the block order is used. Default is TRUE.

show_legend

A logical value indicating if legend should be shown (default is FALSE).

...

Additional graphical parameters.

Value

A ggplot2 plot object.

Examples

data(Russett)
A <- list(
  agriculture = Russett[, seq(3)],
  industry = Russett[, 4:5],
  politic = Russett[, 6:11]
)

perm_out <- rgcca_permutation(A, par_type = "tau",
                              n_perms = 2, n_cores = 1,
                              verbose = TRUE)
print(perm_out)
#> Call: method='rgcca', superblock=FALSE, scale=TRUE, scale_block=TRUE, init='svd',
#> bias=TRUE, tol=1e-08, NA_method='na.ignore', ncomp=c(1,1,1), response=NULL,
#> comp_orth=TRUE 
#> There are J = 3 blocks.
#> The design matrix is:
#>             agriculture industry politic
#> agriculture           0        1       1
#> industry              1        0       1
#> politic               1        1       0
#> 
#> The factorial scheme is used.
#> 
#> Tuning parameters (tau) used: 
#>    agriculture industry politic
#> 1        1.000    1.000   1.000
#> 2        0.889    0.889   0.889
#> 3        0.778    0.778   0.778
#> 4        0.667    0.667   0.667
#> 5        0.556    0.556   0.556
#> 6        0.444    0.444   0.444
#> 7        0.333    0.333   0.333
#> 8        0.222    0.222   0.222
#> 9        0.111    0.111   0.111
#> 10       0.000    0.000   0.000
#> 
#>    Tuning parameters Criterion Permuted criterion     sd zstat p-value
#> 1     1.00/1.00/1.00     0.717              0.154 0.1033  5.45       0
#> 2     0.89/0.89/0.89     0.773              0.164 0.1061  5.74       0
#> 3     0.78/0.78/0.78     0.838              0.176 0.1086  6.09       0
#> 4     0.67/0.67/0.67     0.914              0.190 0.1108  6.53       0
#> 5     0.56/0.56/0.56     1.003              0.206 0.1123  7.10       0
#> 6     0.44/0.44/0.44     1.112              0.226 0.1124  7.89       0
#> 7     0.33/0.33/0.33     1.247              0.251 0.1098  9.07       0
#> 8     0.22/0.22/0.22     1.424              0.286 0.1016 11.20       0
#> 9     0.11/0.11/0.11     1.682              0.343 0.0786 17.04       0
#> 10    0.00/0.00/0.00     2.422              0.557 0.0521 35.80       0
#> The best combination is: 0.00/0.00/0.00 for a z score of 35.8 and a p-value of 0.
plot(perm_out)


perm.out <- rgcca_permutation(A,
  par_type = "sparsity",
  n_perms = 5, n_cores = 1,
  verbose = TRUE
)

print(perm.out)
#> Call: method='sgcca', superblock=FALSE, scale=TRUE, scale_block=TRUE, init='svd',
#> bias=TRUE, tol=1e-08, NA_method='na.ignore', ncomp=c(1,1,1), response=NULL,
#> comp_orth=TRUE 
#> There are J = 3 blocks.
#> The design matrix is:
#>             agriculture industry politic
#> agriculture           0        1       1
#> industry              1        0       1
#> politic               1        1       0
#> 
#> The factorial scheme is used.
#> 
#> Tuning parameters (sparsity) used: 
#>    agriculture industry politic
#> 1        1.000    1.000   1.000
#> 2        0.953    0.967   0.934
#> 3        0.906    0.935   0.868
#> 4        0.859    0.902   0.803
#> 5        0.812    0.870   0.737
#> 6        0.765    0.837   0.671
#> 7        0.718    0.805   0.605
#> 8        0.671    0.772   0.540
#> 9        0.624    0.740   0.474
#> 10       0.577    0.707   0.408
#> 
#>    Tuning parameters Criterion Permuted criterion     sd zstat p-value
#> 1     1.00/1.00/1.00     0.717             0.0872 0.0381  16.5       0
#> 2     0.95/0.97/0.93     0.680             0.0826 0.0346  17.3       0
#> 3     0.91/0.93/0.87     0.640             0.0768 0.0308  18.3       0
#> 4     0.86/0.90/0.80     0.588             0.0698 0.0272  19.0       0
#> 5     0.81/0.87/0.74     0.502             0.0620 0.0238  18.5       0
#> 6     0.77/0.84/0.67     0.409             0.0536 0.0208  17.1       0
#> 7     0.72/0.80/0.61     0.324             0.0450 0.0179  15.6       0
#> 8     0.67/0.77/0.54     0.251             0.0360 0.0151  14.2       0
#> 9     0.62/0.74/0.47     0.188             0.0285 0.0126  12.7       0
#> 10    0.58/0.71/0.41     0.136             0.0232 0.0103  10.9       0
#> The best combination is: 0.86/0.90/0.80 for a z score of 19 and a p-value of 0.
plot(perm.out, type = "zstat")